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ABSTRACT

Thin-plate spline functions - known for their flexibilty, and fidelity

in representing experimental data - are especially well-suited for the

numerical integration of geodetic integrals in the area where the

integration is most sensitive to the data, i.e. in the immediate

vicinity of the evaluation point. Spline quadrature rules are derived

for the contribution of a circular innermost zone to Stokes's formula,

to the formulae of Vening Meinesz, and to the recursively evaluated

operator L n in the analytical continuation solution of Molodensky's

problem. These rules are exact for interpolating thin-plate splines.

In cases where the integration data are distributed irregularly, a

system of linear equations needs to be solved for the quadrature

coefficients. Formulae are given for the terms appearing in these

equations. In case the data are regularly distributed, the coefficients

may be determined once-and-for-all. Examples are given of some fixed-

point rules. With such rules successive evaluation, within a circular

disk, of the terms in Molodensky's series becomes relatively easy.

The spline quadrature technique presented here complements other

techniques such as ring integration for intermediate integration

zones.

Quadrature rules are sought approximating the contribution of a

circular innermost zone to the evaluation of Stokes's formula, the

formulae of Vening Meinesz, and the L 1 gradient operator in the series

analytical continuation solution of Molodensky's problem. The rules

are to be of the form
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where x = (xi,x2), y = (yl,Y2) are plane co-ordinates (with the 1-axis

north and 2-axis east), r0 is the radius of the innermost zone, and

the subscript I indicates innermost zone contribution. {ro_i} , i=l,..,N,

are distinct points in the innermost zone (not all on a single straight

line) where the data are given. The coefficients in each instance

are chosen to make the integration exact for thin-plate splines with

nodes at the _i' and exact for constant and linear functions in the

nullspace of these splines. The thin-plate spline kernel function

associated with function evaluation at _'i is lY-_il21°geiY-_i

The quadrature weights for Stokes's formula are obtained from the

solution of the linear equations
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Similar looking systems of equations give the quadrature weights for

the spline approximation of Vening Meinesz'z formula and the L 1 operator.

In the last case non-zero constant functions are not admissable, and

the thin-plate spline kernel function needs some modification.

Numerical examples show that thin-pLate spline quadrature can be very

effective in evaluating the three integra]s of Stokes, Vening Meinesz

and the L 1 gradient operator.
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